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Quadratic and Cubic Spline Interpolation
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Some variational properties of (2,0) and (3, 1) spline interpolations and their
error estimates are considered.

1. INTRODUCTION

Let (k,m) denote the class of k degree interpolating polynomial splines
whose interpolation conditions are given by mth derivative values. The
variational properties of (2k, 2m — 1) and (2k — 1, 2m) have been considered
by many researchers (e.g., [1,2]), but very few have considered the
variational properties of (2k, 2m) and (2k — 1, 2m — 1). In [3], Sharma and
Tzimbalario considered the variational properties of some kinds of quadratic
spline interpolation. Here we study the (2,0) and (3, 1) problems. The
discussion of the variational properties is an extension of [3]. The error
bounds for the (2,0) problem have been considered in [2-8]; here we shall
give more precise error bounds. The discussion of (3, 1) is a direct extension
of that for (2, 0).

2. INTERPOLATION PROBLEMS

For —ow0 < a < b < +o0 and for any positive integer n > 2, let
dia=x,<x, < <x,=b

denote a partition of [a, b} with knots x; and steps k;,=x,,, —x;. Let
Sp(4, k) denote the class of k degree polynomial splines on 4.
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(2,0) interpolation problem. Find s(x) &€ Sp(4, 2) such that
s(x;)=1; (i =0,1..,n),
S’(.\{,-):f; (J=0orn).
(3, 1) interpolation problem. Find s(x) € Sp(4. 3) such that
s'(x) =11 (i=0,1...n),
s(x;) =/ (j=0orn).
") =f1  (j=0orn).

3. FUNCTIONALS

Let PC*|a, b| = {g(x)|g(x) € C* ']a, b|, g*'(x) is piecewise continuous
on |a, b] and has there at most a finite number of discontinuities of the first
kind},

PCHla, b] = {g(x)| g(x) € PC¥|a, b, g* P(x,)=/¥""i=0, ... 0L
Consider the functionals

Jlf“"”l:"‘\;‘ _]l,lf”* "] (k=2,3)

i=0

Xig

‘]i‘f(k rlb} :‘ ' |f1k -I)(x) +f(k—l)(xi+'\.” \ *X)]Z dx,

X

(i=0.l...n—- 1)

THEOREM 3.1. Let f(x) € C* '|x;,x;_,|. Then f(x) is a solution of the
Junctional equation J;|f* V| =0 if and only if
SE D) =% (x + xg, - X, (3.1
ie.on |x;, x;, | ¥ P(x) is symmetric about the midpoint of |x,.x; |.
Proof. By differentiation of (3.1) we obtain
SEP)+ 5+ x —x) =0, (3.2)

which implies

Jlfe =0



QUADRATIC AND CUBIC SPLINE INTERPOLATION 23

Conversely if J,[f* "]=0, then integrating (3.2) gives f* " ?(x)—

SED(x; + x;,., — x) = c¢. Setting x = (x; + X, ,)/2, we obtain ¢ =0. Q.E.D.
From Theorem 3.1 we obtain

THEOREM 3.2. Let f(x)€ PC*|a,b]. Then f(x) is a solution of
JIf*=P]=0 if and only if (3.2) holds for i=0, l,..,n— 1, i.e., on every
[x;, x;, 1] f(x) is symmetric about the midpoint of the interval.

For spline functions the conditions above can be simplified.
THEOREM 3.3. Let s(x)€ Sp(d,k). Then s(x) is a solution of
JLf* V] =0 if and only if
s(k_Z)(xi):s(kiz)(xiH)-

Proof. The necessary condition has been given in Theorem 3.1. For the
sufficient condition integrate by parts:

Jis TP = [s%7P00) — 5P (x4 gy — )

X lS(k_l)(x) + s(k*l)(xi + X0 _x)”;;H

FXi+1
—| %) = s %P0 4 X — )]

Xi

X [s®0x) = s®(x; + x;,, —x)] dx = 0.

THEOREM 3.4. Let s(x)& Sp(d,k). Then s(x) is a solution of
J|f*=P]| =0 if and only if

s () = s V(x,) = o = 5% ()

4. EXISTENCE AND UNIQUENESS
THEOREM 4.5. The solutions of (2,0), (3,1) spline interpolation
problems uniquely exist.

Proof. It is enough to show there exists only the trivial solution for the
homogeneous interpolation problem.
By Theorem 3.2, 3.4:

S (rg) = 5D ey) = e = 54D ,) =0,
S 0Gg) = 4 ) = e = (1) s (x,) = 0,

Sos* P(x)=0(x€E |a,b]). Ifk=3,by s(x;)=0 (j=0orn), s(x)=0.
Q.E.D.
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THEOREM 4.6. For another (3.1) problem: find s(x)& Sp(4.3) such
that s'(x;)=f1 (i=0,1....n), s(x;)=f; (j=0.n): the solution uniquely
exists if and only if h) — hi + - + (=1)""' h2 | £0.

Proof. By Theorems 3.2. 3.4;
s'(xg)=5"(x))=---=5"(x,)=0,
§7(xg) == 8"(x) = = (=1)"5"(x,).
Therefore,
s(x)=c; - 3dhj(x —x;)" + 2d,(x —x,)°
(xE|x,.x; ] i=0.lo.n— 1)
dohy=—d,h,=---=(—1)"'d
As s(xy) = s(x,) =0, we have
doho(hy—hi+ -+ (=1)"" "k} )=0.
So dy =0 1if and only if
hy—hi+ -+ (—1)" 'hl  #0

CorROLLARY. [f h;=const(i=0, l....,n— 1) and n is odd, or if h,<
h<--<h, oy (orhgyz2h 2 2h, ) and there is at least one inequalily.
the solution of the above problem uniquely exists.

5. VARIATIONAL PROPERTIES

THEOREM 5.7. Let s(x)& Sp(d,k) be the solution of the (k.k —2)
(k =2, 3) problem and let f(x)€ PCX|a,b| be an arbitrary function. Then
the first integration relationships hold:

local:
JUSE Y =g s ) 1 (=)%Y (=0, 1eon— 1),
global:
JISE D =ISE RI[(f=- )] k=2.3),
We note

T e R e (R
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where
I[(f— S)“"”,s“‘“”]
Xiy1
=[O St x x)
— S(kfl)(x) . s"“”(xi + Xii _x)]
X [s%00) + 5% V(0 4 x,,, — x)] dx. (5.1
By integration by parts 7|(f—s)*~",s%""]=0.

THEOREM 5.8. Under the conditions of Theorem 5.7, we have the
Jollowing relationships:

local:

JIS Y] 2T s% ] (=0, 1.,n—1),
global:

JSERI I (e=2,3).

Notice J,[(f—s)* "] >0, J|(f—5)*""] >0, and apply Theorem 5.7 to
prove Theorem 5.8.

Remark. By Theorems 3.1 and 3.2 we know that the minimization for
problem J,[f% V|, J[f%“ Y| on PC%[a,b] has no unique solution.
However, there is one on Sp(4, k) which satisfies the end point conditions.

THEOREM 5.9. Let f(x) € PCila, b|. Let s{x) € Sp(d, k) be the solution
of the (k, k — 2) interpolation problem for f(x), and let s(x) € Sp(4, k) be an
arbitrary spline. The following conditions hold:

local:
T =) N IKTS=9" "] (=0, 1y n— 1),
global:
JI = s M <I(f—5)% ") k=2,3) (5.2)
If s(x) and s{x) have the same end point conditions, equality holds in
(5.2) only if s{x) = s(x).
Proof. We have

Ji[(f_‘ S)(kil)] :Ji[(f" sf)(k_l)] +Ji[(Sf_S)(k—l)]
+2[(f—sp* ", (s,—5)* V),
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where I[(f—s)% ", (s,~s)* "] is similar to (5.1). By integration by
parts:

10— s)™ (s 5% =0,
Therefore,
Jil(f— S)(k' H) :Ji|(f¥5/')(k" 1)} +J,-|(S,»* S)M Iv}.

But
Ji[(sj_s)(k—l)]>0. JI(S_,-—S)'A ”120-

which prove the theorem.
THEOREM 5.10. Let f(x)€ PChla.b]|. Let sAx)€E Sp(d.k) be ihe

solution of the (k,k—2) interpolation problem for f(x). The second
integration relationships hold:

local:

T e e e Y A B N
global:

JS=s) ==L =s)* SN k=23,

where

Lll(f¥ S/_)lk - l).‘/‘(k)’

=[S ) = s P S )
+5 P+ x, - X))
X lf”"(X)"’./‘(k)(-Yf*F»YH \— X} dx (7= 0. L b

LI = 5% 2o

= NS R k=2.3).

[0

Proof is by integration by parts.

6. ERROR BOUNDS

Let [/ = max ey S0 VAL = 1017 M= (0
Vg(f{j))~ h=max, ;., h;, max hy/min h; <. (Z;':’]l th; — h_;’» VTR
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maxo<m<n—1(m3xm<i(25‘=m+1 |h; — hj+1|)/hms maxi<m(21""zi+l lhj* hj+1|)/
ho) < Biys R(Sfx) =f1x) — s{x).

By Peano’s theorem we obtain
b
RUS %)= Ryl(x—03/2100" () db,

where R, {(x —1)2/2!} is the remainder of the (2,0) interpolation problem
for the function (x — )% /2! of argument x. We can show [2]
R —1)2/21) = R,{(x — 1)%,/21).

Therefore,

R(j)(./: x) = R;“ 1){()( — 1)2):}'/(2 "./)”lt:hfm(b)
SRR ) (G=0.1,2)

where
RE V(= 07 ) = [ Ryfos— 1)

a

Therefore,

IR0l max RV —0)37/Q - )M, (j=0,1,2).

a<t.x<b
By Theorem 3.3,
R,{(x— 01 /21
=0, a<i<x,,
= (X - I)Z/z - (x - xm)('xm+l - {)[(t - xm)(x X th)
+(x—x,) h,)/20,,  x,<t<x,
= —(x =X, (st — DX = X = 2h,)(t = x,) + (X = x,,) B,y )/205,
XSS Xy s
= (_I)i-m_l (X _xm)(x_xm - hm)(t - XI)(xi+l - l)/hmhi’

XU Xy, i=m+la,n— 1L

Therefore, we obtain Theorem 6.11.
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THEOREM 6.11. If f(x) € C'la,b| with [V of bounded variation, then
for the solution of the (2,0) problem and its derivatives we have

IRV(fx) <eMh T (j=0.1.2), (6.1)

where ¢, = (4 + 34,)/36, ¢, = (4 + 36,)/18, ¢, = (5 + S, + 2B,)/6.

CoROLLARY 6.11. Under the conditions of Theorem 6.11. if" th;{ is a

i

monotone  sequence then (6.1) holds. where c¢,=7/36. ¢, = T/18.
c,=(5+35,)/6.

If we take s/(x) as the solution of the (2,0} problem for /'(x). we obtain
Theorem 6.12 directly from Theorem 6.11.

THEOREM 6.12. If f(x) € C*la.b| with f'*' of bounded variation. then
Jor the solution of the (3.1) problem and its derivatives we have

HR(./ -\')" < Cylb *0)11/]4/’1:.
IR V(L <Mt 7+ (j=0.1.2).

where c,. c,. c, are the same as in Theorem 6.11.
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